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COMPUTING TENSOR \bfitZ -EIGENVECTORS WITH DYNAMICAL
SYSTEMS\ast 

AUSTIN R. BENSON\dagger AND DAVID F. GLEICH\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . We present a new framework for computing Z-eigenvectors of general tensors based
on numerically integrating a dynamical system that can only converge to a Z-eigenvector. Our
motivation comes from our recent research on spacey random walks, where the long-term dynamics
of a stochastic process are governed by a dynamical system that must converge to a Z-eigenvector
of a transition probability tensor. Here, we apply the ideas more broadly to general tensors and find
that our method can compute Z-eigenvectors that algebraic methods like the higher-order power
method cannot compute.
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1. Preliminaries on tensor eigenvectors. Computing matrix eigenvalues is
a classic problem in numerical linear algebra and scientific computing. Given a square
matrix \bfitA , the goal is to find a vector-scalar pair (x, \lambda ) with x \not = 0 satisfying

(1.1) \bfitA x = \lambda x.

The pair (x, \lambda ) is called the eigenpair, x the eigenvector, and \lambda the eigenvalue. After
several decades of research and development, we have, by and large, reliable methods
and software for computing all eigenpairs of a given matrix\bfitA . (Experts will, of course,
be aware of exceptions, but we hope they would agree with the general sentiment of
the statement.)

In numerical multilinear algebra, there are analogous eigenvector problems (note
the plurality). For example, given a three-mode cubic tensor \bfitT (here meaning that
\bfitT is a multidimensional n\times n\times n array with entries Ti,j,k, 1 \leq i, j, k,\leq n1), the two
most common tensor eigenvector problems are the following:

Z-eigenvectors (Qi, 2005) H-eigenvectors (Qi, 2005)
l2-eigenvectors (Lim, 2005) lk-eigenvectors (Lim, 2005)\sum 
jk Ti,j,kxjxk = \lambda xi, 1 \leq i \leq n

\sum 
jk Ti,j,kxjxk = \lambda x2

i , 1 \leq i \leq n

\| x\| 2 = 1. x \not = 0.

We use the ``Z"" and ``H"" terminology instead of ``l2"" and ``lk."" Both Z- and
H-eigenvectors are defined for tensors with the dimension equal in all modes (such a
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tensor is called cubic (Comon et al., 2008)). The definitions can be derived by showing
that the eigenpairs are KKT points for a generalization of a Rayleigh quotient to
tensors (Lim, 2005). One key difference between the types is that H-eigenvectors are
scale-invariant, while Z-eigenvectors are not---this is why we put a norm constraint
on the vector. Specifically, if we ignore the norm constraint and scale x by a constant,
the corresponding Z-eigenvalue would change; for H-eigenpairs, this is not the case.
If \bfitT is symmetric, then it has a finite set of Z-eigenvalues, and, moreover, there must
be a real eigenpair when the order of the tensor (i.e., the number of modes or indices)
is odd (Cartwright and Sturmfels, 2013).

This paper presents a new framework for computing Z-eigenpairs. Tensor Z-
eigenvectors show up in a variety of applications, including evolutionary biology (Bini,
Meini, and Poloni, 2011; Meini and Poloni, 2011), low-rank factorizations and com-
pression (De Lathauwer, De Moor, and Vandewalle, 2000; Kofidis and Regalia, 2002;
Anandkumar et al., 2014), signal processing (De Lathauwer, 1997; Kofidis and Re-
galia, 2001), quantum geometry (Wei and Goldbart, 2003; Hu, Qi, and Zhang, 2016),
medical imaging (Qi, Wang, and Wu, 2008), and data mining (Benson, Gleich, and
Leskovec, 2015; Gleich, Lim, and Yu, 2015; Wu, Benson, and Gleich, 2016; Benson,
2019). All real eigenpairs can be computed with a Lassere-type semidefinite pro-
gramming hierarchy (Cui, Dai, and Nie, 2014; Nie and Wang, 2014; Nie and Zhang,
2017), but the problem of computing them remains NP-hard (Hillar and Lim, 2013),
and the scalability of such methods is limited (see subsection 3.3 for experiments).
Thus, we still lack robust and scalable general-purpose methods for computing these
eigenvectors.

We introduce two special cases of tensor contractions that will be useful:
1. The tensor apply takes a cubic tensor and a vector and produces a vector,

akin to Qi's notation (Qi, 2005):

three-mode tensor y = \bfitT x2 yi =
\sum 

j,k Ti,j,kxjxk

m-mode tensor y = \bfitT xm - 1 yi =
\sum 

i2,...,in
Ti,i2,...,imxi2 \cdot \cdot \cdot xim .

2. The tensor collapse takes a cubic tensor and a vector and produces a matrix:

three-mode tensor \bfitY = \bfitT [x] \bfitY =
\sum 

k T:,:,kxk

Yij =
\sum 

k Ti,j,kxk

m-mode tensor \bfitY = \bfitT [x]m - 2 \bfitY =
\sum 

i3,...,im
T:,:,i3,...,imxi3 \cdot \cdot \cdot xim

Yij =
\sum 

i3,...,im
Ti,j,i3,...,imxi3 \cdot \cdot \cdot xim .

For the tensor collapse operator, the ``:"" symbol signifies taking all entries along
that index, so T:,:,k is a square matrix. The tensor may not be symmetric, but we
are always contracting onto the first mode (tensor apply) or first and second modes
(tensor collapse); we assume that \bfitT has been permuted in the appropriate manner for
the problem at hand. With this notation, the Z-eigenvector problem can be written
as

(1.2) \bfitT xm - 1 = \lambda x, \| x\| 2 = 1.

The crux of our computational method is based on the following observation that
relates tensor and matrix eigenvectors.

Observation 1.1. A tensor Z-eigenvector x of an m-mode tensor must be a matrix
eigenvector of the collapsed matrix \bfitT [x]m - 2, i.e.,

(1.3) \bfitT xm - 1 = \lambda x \Leftarrow \Rightarrow \bfitT [x]m - 2x = \lambda x.
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The catch, of course, is that the matrix itself depends on the tensor eigenvector we
want to compute, which we do not know beforehand. Therefore, we still have a
nonlinear problem.

2. A dynamical system's framework for computing \bfitZ -eigenvectors. Ob-
servation 1.1 provides a new perspective on the tensor Z-eigenvector problem. Specif-
ically, tensor Z-eigenvectors are matrix eigenvectors, just for some unknown matrix.
Our computational approach is based on the following continuous-time dynamical
system, for reasons that we will make clear in subsection 2.2:

(2.1)
dx

dt
= \Lambda (\bfitT [x]m - 2) - x.

Here, \Lambda is some fixed map that takes as input a matrix and produces as output some
prescribed eigenvector of the matrix with unit norm. For example, on an input \bfitM ,
\Lambda could be defined to compute several objects:

1. the eigenvector of \bfitM with kth smallest/largest magnitude eigenvalue;
2. the eigenvector of \bfitM with kth smallest/largest algebraic eigenvalue;
3. the eigenvector of \bfitM closest in distance to a given vector v.

We resolve the ambiguity in the sign of the eigenvector by picking the sign based on the
first element. In the case of multiple eigenvectors sharing an eigenvalue, we propose
using the closest eigenvector to x, although we have not evaluated this technique.

Proposition 2.1. Let \Lambda be a prescribed map from a matrix to one of its eigen-
vectors. Then, if the dynamical system in (2.1) converges to a nonzero solution, it
must converge to a tensor Z-eigenvector.

Proof. If the dynamical system converges, then it converges to a stationary point.
Any stationary point has zero derivative, so

dx

dt
= 0 \Leftarrow \Rightarrow \Lambda (\bfitT [x]m - 2) = x \Leftarrow \Rightarrow \bfitT [x]m - 2x = \lambda x for some \lambda that depends on \Lambda 

\Leftarrow \Rightarrow \bfitT xm - 1 = \lambda x.

One must be a bit careful with the input and output values of \Lambda . If \bfitT is not
symmetric, then \bfitT [x]m - 2 might not be diagonalizable, and we may have to deal with
complex eigenvalues. To keep the dynamical system real-valued, one could always
modify the map \Lambda to output the real part. However, the tensor need not be symmetric
(nor \bfitT [x]m - 2 normal for all x) for the dynamical system to maintain real values.
In fact, our motivation for this dynamical system comes from a tensor that is not
necessarily symmetric, which we will discuss in subsection 2.2.

Proposition 2.1 leads to a broad framework for computing Z-eigenvectors:
1. choose a map \Lambda and a numerical integration scheme;
2. numerically integrate (2.1).

Different choices of \Lambda may converge to different Z-eigenvectors, and different nu-
merical integration schemes may lead to different convergence properties. Figure 1
shows a concrete example, where \Lambda picks the eigenvector corresponding to eigenvalue
with largest magnitude real part, along with the forward Euler numerical integration
scheme.

The dynamical system in (2.1) has no dependence on the time t. Thus, the
system might be a good candidate for an explicit solution; however, this would require
integrating the map \Lambda , for which an explicit solution is unclear in general. Thus, we
focus on numerical integration.



1314 AUSTIN R. BENSON AND DAVID F. GLEICH

1 using LinearAlgebra

2
3 function tensor\.apply(T:: Array--Float64 ,3\H , x:: Vector--Float64 \H )

4 n = length(x)

5 y = zeros(Float64 , n)

6 for k in 1:n; y += T[:, :, k] * x * x[k]; end

7 return y

8 end

9
10 function tensor\.collapse(T::Array--Float64 ,3\H , x:: Vector--Float64 \H )

11 n = length(x)

12 Y = zeros(Float64 , n, n)

13 for k in 1:n; Y += T[:, :, k] * x[k]; end

14 return Y

15 end

16
17 function dynsys\.forw\.eul(T::Array--Float64 ,3\H , h::Float64 , niter ::Int64)

18 function dx\.dt(u:: Vector--Float64 \H ) \# Derivative

19 F = eigen(tensor\.collapse(T, u))

20 ind = sortperm(abs.(real(F.values )))[1]

21 v = F.vectors[:, ind]

22 return sign(v[1]) * v - u \# sign consistency

23 end

24 x = normalize(ones(Float64 , size(T, 1)), 1) \# starting point

25 eval\.hist = [x' * tensor\.apply(T, x)]

26 for \. = 1:niter

27 x += h * dx\.dt(x) \# forward Euler

28 push!(eval\.hist , x' * tensor\.apply(T, x)) \# Rayleigh quotient

29 end

30 return (x, eval\.hist) \# guess at evec and history of evals

31 end

Fig. 1. Julia implementation of the dynamical system for a 3-mode tensor with a map \Lambda that
picks the largest magnitude real eigenvalue and numerical integration with the forward Euler method.
Code snippet is available at https://gist.github.com/arbenson/f28d1b2de9aa72882735e1be24d05a7f.
A more expansive code is available at https://github.com/arbenson/TZE-dynsys.

2.1. Forward Euler and diagonal tensors. As an illustrative example, we
consider the special case of using the forward Euler numerical integration scheme
for computing the tensor eigenvalues of an n-dimensional, m-mode diagonal tensor
\bfitT . Without loss of generality, assume that the diagonal entries of \bfitT are decreasing
in order so that Ti,...,i < Tj,...,j if i > j. This tensor has at least n Z-eigenpairs:
(ei, Ti,...,i) for 1 \leq i \leq n, where ei is the ith standard basis vector. Suppose that we
want to compute the ith eigenvector and set \Lambda to select the unit-norm eigenvector
closest to ei in angle. Since \bfitT [x]m - 2 is diagonal, its eigenvectors are the standard
basis vectors, and \Lambda (\bfitT [x]m - 2) = ei. Let rk = xk  - ei be the residual at the kth
iteration. If the step size is h, then

\| rk+1\| = \| xk+1  - ei\| = \| xk + h(ei  - xk) - ei\| 
= (1 - h)\| xk  - ei\| = (1 - h)\| rk\| = (1 - h)k\| r0\| .

Thus, the forward Euler scheme converges if h \leq 1 and converges in one step if h = 1.
Figure 2 (left) illustrates the dynamics for an example tensor \bfitT (n = 3, m = 3) with
T1,1,1 = 5, T2,2,2 = 2, and T1,1,1 = 1. In this case, the entire surface of the three-
dimensional sphere is a basin of attraction for this eigenvector, which is consistent
with our convergence analysis. In fact, for this specific case, we have the closed-form
solution

x(t) = e - t[x(0) - ei] + ei,

and we have exponential convergence to a solution, consistent with Figure 2 (left).

https://gist.github.com/arbenson/f28d1b2de9aa72882735e1be24d05a7f
https://github.com/arbenson/TZE-dynsys
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Fig. 2. Vector field of dynamical systems from (2.1) of points on the surface of the three-
dimensional unit sphere for a three-dimensional, third-order diagonal tensor with entries 5, 2, and
1 along the diagonal. Fixed points are marked with a blue ``X."" Sample trajectories of the dynamical
system are illustrated with darker red points corresponding to earlier time and lighter yellow corre-
sponding to later time (computed with forward Euler with step size 0.01). (Left) When the map \Lambda 
is the eigenvector closest in angle to the third standard basis vector, the entire surface is a basin
of attraction for this vector, which is a Z-eigenvector of the tensor. The trajectories head toward
this eigenvector. (Right) When the map \Lambda is the eigenvector corresponding to the smallest algebraic
eigenvalue, the Z-eigenvector corresponding to the third standard basis vector has no basin of at-
traction. The map is undefined at the attracting eigenvector where (x1, x2) \approx (0.18, 0.44) because
the eigenspace corresponding to the smallest algebraic eigenvalue has dimension greater than one.

However, our analysis relies on the particular choice of \Lambda . Suppose instead that we
choose \Lambda to select the eigenvector corresponding to the smallest algebraic eigenvalue,
and we are trying to compute the eigenvector e3 of a 3\times 3\times 3 diagonal tensor \bfitT with
strictly decreasing diagonal entries. Moreover, suppose we have a starting iterate

x0 =
\bigl[ 
\varepsilon /2 \varepsilon /2 1 - \varepsilon 

\bigr] T
, which is close to the Z-eigenvector e3. Then

\Lambda (\bfitT [x0]) = \Lambda 

\left(  \left[  \varepsilon 
2T1,1,1 0 0

0 \varepsilon 
2T2,2,2 0

0 0 (1 - \varepsilon )T3,3,3

\right]  \right)  = e2

if \varepsilon is sufficiently small. Forward Euler integration with step size h gives the next

iterate x1 = x0 + h(\Lambda (\bfitT [x0]) - x0) =
\bigl[ 
(1 - h)\varepsilon (1 - h)\varepsilon + h 1 - \varepsilon  - h

\bigr] T
, which is

further away from the Z-eigenvector e3 than x0. Thus, there is no basin of attraction
for the Z-eigenvector e3 with this particular choice of map \Lambda .

It turns out that this is a case where the dynamical system does not converge.
The system is ill-defined for some points, and, moreover, these points are attractors
(specifically, the eigenvector (x1, x2, x3) \approx (0.18, 0.44, 0.88) in the example above; see
Figure 2, right). In general, for some time, the dynamical system will evolve in the
direction of ei, where Ti,i,ixi < minj Tj,j,jxj for i \not = j, i, j \in \{ 1, 2, 3\} . Along this
direction, the ith coordinate of the vector increases until Ti,i,ixi = Tj,j,jxj for some
j \not = i. At this point, the map is ill-defined since the eigenspace corresponding to
the smallest eigenvalue of \bfitT [x] has dimension at least two. Since the diagonal tensor
entries are distinct by assumption, this is not a fixed point. We can disambiguate
the map at these ambiguous points. However, any way of doing so besides artificially
mapping the vector to a Z-eigenvector of \bfitT would result in immediate attraction back
to one of these ambiguous points.

2.2. Spacey random walks motivation for the dynamical system. The
motivation for the dynamical system comes from our previous analysis of a stochas-
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tic process known as the ``spacey random walk"" that relates tensor eigenvectors of a
particular class of tensors to a stochastic process (Benson, Gleich, and Lim, 2017).
Specifically, the class of tensors are irreducible transition probability tensors (any
irreducible tensor \bfitP with

\sum n
i1=1 Pi1,i2,...,im = 1 for 1 \leq i2, . . . , im \leq n). For simplic-

ity, we discuss a three-mode transition probability tensor \bfitP , where the entries can
be interpreted as coming from a second-order Markov chain---the entry Pi,j,k is the
probability of transitioning to state i given that the last two states were j and k.
Due to the theory of Li and Ng (2014), there exists a tensor Z-eigenvector x with
eigenvalue 1 satisfying

(2.2) \bfitP x2 = x,
\sum n

i=1 xi = 1, xi \geq 0.

The vector x is stochastic, but it does not represent the stationary distribution
of a Markov chain. Instead, we showed that x is the limiting distribution of a non-
Markovian, generalized vertex-reinforced random walk (Bena\"{\i}m, 1997) that we called
the spacey random walk (Benson, Gleich, and Lim, 2017). In the nth step of a spacey
random walk, after the process has visited states X1, . . . , Xn, it spaces out and forgets
its second last state (that is, the state Xn - 1). It then invents a new history state
Yn by randomly drawing a past state X1, . . . , Xn. Finally, it transitions to Xn+1 via
the second-order Markov chain represented by \bfitP as if its last two states were Xn

and Yn; i.e., it transitions to Xn+1 with probability PXn+1,Xn,Yn . (In contrast, a true
second-order Markov chain would transition with probability PXn+1,Xn,Xn - 1

.)
Using results from Bena\"{\i}m (1997), we showed that the long-term dynamics of the

spacey random walk for an m-mode transition probability tensor are governed by the
following dynamical system (Benson, Gleich, and Lim, 2017):

(2.3)
dx

dt
= \Pi (\bfitP [x]m - 2) - x,

where \Pi is a map that takes a column-stochastic transition matrix and maps it to the
Perron vector of the matrix. In other words, if the spacey random walk converges,
it must converge to an attractor of the dynamical system in (2.3). The dynamical
system in (2.3) is a special case of the more general system in (2.1), where the map
\Lambda picks the eigenvector with the largest algebraic eigenvalue (the Perron vector) and
the tensor has certain structural properties (it is an irreducible transition probability
tensor).

To summarize, our prior work studied a specific case of the general dynamical sys-
tem in (2.1) to understand the stochastic process behind principal Z-eigenvectors of
transition probability tensors. The general dynamical system provides a new frame-
work for computing general tensor eigenvectors---if the dynamical system in (2.1)
converges, then it converges to a tensor Z-eigenvector. The dynamical system may
not have an attractor (Peterson, 2018), but it usually does in practice (see section 3).

2.3. Relationship to the Perron iteration. Bini, Meini, and Poloni derived
a Perron iteration to compute the minimal nonnegative solution of the equation

(2.4) x = a+\bfitB x2,

where a and \bfitB are nonnegative and the all-ones vector e is a (nonminimal) nonneg-
ative solution (Bini, Meini, and Poloni, 2011; Meini and Poloni, 2011). The Perron
iteration for computing the minimal nonnegative solution is

(2.5) xk+1 = \Pi [\bfitF +\bfitB [e] - \bfitB [xk]],
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where \bfitF =
\sum 

j \bfitB :,j,:, e is the vector of all ones, and \Pi maps a nonnegative matrix to

its Perron vector with unit 1-norm. Suppose that x0 \geq 0 and eTx0 = 1. Then every
iterate xk is stochastic and

(2.6) \bfitF = \bfitW [xk], Wi,j,\ell = Fi,j , \bfitB [e] = \bfitZ [xk], Zi,j,\ell = [\bfitB [e]]i,j .

Thus, we can rewrite the Perron iteration in (2.5) as xk+1 = \Pi (\bfitT [xk]), where \bfitT =
\bfitW +\bfitZ  - \bfitB . These iterates are equivalent to forward Euler integration of the dynamical
system in (2.1) with unit step size and eigenvector map \Lambda = \Pi .

Meini and Poloni (2018) derived a similar Perron iteration for the solution to (2.2)
for the case of a 3-mode transition probability tensor. The algorithm first computes
a minimal substochastic nonnegative vector m satisfying m = \bfitP m2 using a Newton
method. The Perron iteration for the transition probability tensor is then xk+1 =
\Pi (\bfitT [xk]) for Ti,j,\ell = Pi,j,\ell (1+mj +m\ell ). The iterates are again equivalent to forward
Euler integration of (2.1) with unit step size.

2.4. Relationship to the shifted higher-order power method. The shifted
higher-order power method (Kolda and Mayo, 2011) can be derived by noticing that

(2.7) (1 + \gamma )\lambda x = \bfitT xm - 1 + \gamma \lambda x

for any eigenpair. This yields the iteration

(2.8) xk+1 =

1
1+\gamma 

\bigl( 
\bfitT xm - 1

k + \gamma xk

\bigr) 
\| 1
1+\gamma 

\bigl( 
\bfitT xm - 1

k + \gamma xk

\bigr) 
\| 2

for any shift parameter \gamma (the case where \gamma = 0 is just the classical ``higher-order power
method"" (De Lathauwer, De Moor, and Vandewalle, 2000; Regalia and Kofidis, 2000;
Kofidis and Regalia, 2002)). Kolda and Mayo showed that when \bfitT is symmetric, the
iterates in (2.8) converge monotonically to a tensor eigenvector given an appropriate
shift \gamma .

If \bfitT = \bfitP for some transition probability tensor \bfitP and we are interested in the
case when \lambda = 1 and we normalize via \| x\| 1 = 1, then one can also derive these
iterates by the dynamical system

(2.9)
dx

dt
= \bfitP xm - 1  - x

(cf. (2.3)). If this dynamical system converges (dx/dt = 0), then x = \bfitP xm - 1, and
x is a tensor Z-eigenvector with eigenvalue 1. If we numerically integrate (2.9) using
the forward Euler method with step size h = 1/(1 + \gamma ) and any starting vector x0

satisfying x0 \geq 0 and \| x0\| 1 = 1, then the iterates are

xk+1 = xk +
1

1 + \gamma 

\bigl( 
\bfitP xm - 1

k  - xk

\bigr) 
(2.10)

=
1

1 + \gamma 

\bigl( 
\bfitP xm - 1

k + \gamma xk

\bigr) 
=

1
1+\gamma 

\bigl( 
\bfitP xm - 1

k + \gamma xk

\bigr) 
\| 1
1+\gamma 

\bigl( 
\bfitP xm - 1

k + \gamma xk

\bigr) 
\| 1

,(2.11)

which are the same as the shifted higher-order power method iterates in (2.8). The
last equality follows from the fact that \| xk\| 1 = 1 and xk \geq 0, which is true by a
simple induction argument. The base case holds by the initial conditions and

(2.12) \| \bfitP xm - 1
k + \gamma xk\| 1 = \| \bfitP xm - 1

k \| 1 + \gamma = 1 + \gamma 

since \bfitP xm - 1
k and xk are both stochastic vectors.
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With a general tensor \bfitT , we can either enforce normalization by evolving the
dynamical system over, say, a unit sphere, or we can let the vector x be unnormalized.
The latter case gives a more direct connection to the shifted symmetric higher-order
power method (SS-HOPM). In this case, any vector x where \bfitT xm - 1 = \| x\| 2x is a
tensor Z-eigenvector. This leads to the following dynamical system:

(2.13)
dx

dt
= \bfitT xm - 1  - \| x\| 2x.

If dx/dt = 0, then \| x\| 2x = \bfitT xm - 1, so x is a Z-eigenvector of \bfitT with eigenvalue
\| x\| 2. Now suppose that we numerically integrate the dynamical system in (2.13) by

1. taking a forward Euler step to produce the iterate x\prime 
k+1;

2. projecting x\prime 
k+1 onto the unit sphere by xk+1 = x\prime 

k+1/\| x\prime 
k+1\| 2.

If the step size of the forward Euler method is h = 1/(1 + \gamma ), then

x\prime 
k+1 = xk +

1

1 + \gamma 
(\bfitT xm - 1

k  - \| xk\| 2xk) =
1

1 + \gamma 

\bigl( 
\bfitT xm - 1

k + \gamma xk

\bigr) 
(2.14)

since \| xk\| 2 = 1. The projection onto the unit sphere then gives the shifted higher-
order power method iterates in (2.8).

3. Numerical examples. We now show that our method works on two test
tensors used in prior work. Subsection 3.1 shows that our approach can compute
all eigenvalues of a specific tensor, while the (shifted) higher-order power method
cannot compute all of the eigenvalues. Subsection 3.2 verifies that our approach can
compute all eigenvalues of a tensor whose eigenvalues were found with semidefinite
programming (SDP). Finally, subsection 3.3 shows that our method is faster than
SS-HOPM and the SDP method.

3.1. Example 3.6 from Kolda and Mayo (2011). Our first test case is a
3\times 3\times 3 symmetric tensor from Kolda and Mayo (2011, Example 3.6):

T:,:,1 =

\left[   - 0.1281 0.0516  - 0.0954
0.0516  - 0.1958  - 0.179

 - 0.0954  - 0.179  - 0.2676

\right]  , T:,:,2 =

\left[  0.0516  - 0.1958  - 0.179
 - 0.1958 0.3251 0.2513
 - 0.179 0.2513 0.1773

\right]  ,

T:,:,3 =

\left[   - 0.0954  - 0.179  - 0.2676
 - 0.179 0.2513 0.1773
 - 0.2676 0.1773 0.0338

\right]  .

The tensor has 7 eigenvalues, which Kolda and Mayo classify as ``positive stable,""
``negative stable,"" or ``unstable"" (see Figure 3, top), corresponding to positive defi-
niteness, negative definiteness, or indefiniteness of the projected Hessian of the La-
grangian of their optimization function (Kolda and Mayo, 2011). (Since the tensor
has an odd number of modes, we only consider eigenvalues up to sign.) Kolda and
Mayo showed that their SS-HOPM, a generalization of the symmetric higher-order
power method (S-HOPM) (De Lathauwer, De Moor, and Vandewalle, 2000; Regalia
and Kofidis, 2000; Kofidis and Regalia, 2002), only converges to eigenvectors of the
positive or negative stable eigenvalues. An adaptive version of SS-HOPM has the
same shortcoming (Kolda and Mayo, 2014). A recently proposed Newton iteration
can converge to eigenpairs where the projected Hessian has eigenvalues bounded away
from 0 (Jaffe, Weiss, and Nadler, 2018).
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\lambda Type S-HOPM SS-HOPM V1 V2 V3 V4 V5

0.0180 Neg. stable 0 18 0 25 0 100 0
0.4306 Neg. stable 38 29 38 0 45 0 0
0.8730 Neg. stable 62 40 62 0 47 0 0
0.0006 Pos. stable 0 13 0 19 8 0 0
0.0018 Unstable 0 0 0 25 0 0 32
0.0033 Unstable 0 0 0 35 0 0 37
0.2294 Unstable 0 0 0 0 0 0 31

Fig. 3. (Top) The 7 eigenvalues of the test tensor from Kolda and Mayo (2011, Example 3.6)
and the number of random trials (out of 100) that converge to the eigenvalue for (i) the symmetric
higher-order power method, S-HOPM (De Lathauwer, De Moor, and Vandewalle, 2000; Regalia and
Kofidis, 2000; Kofidis and Regalia, 2002); (ii) the shifted symmetric higher-order power method,
SS-HOPM (Kolda and Mayo, 2011); and (iii) 5 variations of our dynamical systems approach.
Variation 1 selects the largest magnitude eigenvalue, Variation 2 selects the smallest magnitude
eigenvalue, Variation 3 selects the largest algebraic eigenvalue, Variation 4 selects the smallest
algebraic eigenvalue, and Variation 5 selects the second smallest algebraic eigenvalue. Results for
(i) and (ii) are from Kolda and Mayo (2011). Our algorithm is the only one that is able to compute
all of the eigenvalues, including those which are ``unstable,"" the eigenvectors to which SS-HOPM
and S-HOPM cannot converge (Kolda and Mayo, 2011). (Bottom) Convergence plots for the three
unstable eigenvalues from variation 5 of our algorithm in terms of the Rayleigh quotient, where \bfx k

is the kth iterate.

Of the 7 eigenpairs for the above tensor, 3 are unstable. Our dynamical systems
approach can compute all 7 eigenpairs, using 5 variations of the dynamical system:

1. \Lambda maps \bfitM to the eigenvector with largest magnitude eigenvalue;
2. \Lambda maps \bfitM to the eigenvector with smallest magnitude eigenvalue;
3. \Lambda maps \bfitM to the eigenvector with largest algebraic eigenvalue;
4. \Lambda maps \bfitM to the eigenvector with smallest algebraic eigenvalue;
5. \Lambda maps \bfitM to the eigenvector with second smallest algebraic eigenvalue.

We used the forward Euler method with step size set to 0.5 in order to compute the
eigenvalues. Empirically, convergence is fast, requiring fewer than 10 iterations (Fig-
ure 3, bottom row). One can also also compute these eigenvectors with semidefinite
programming (Cui, Dai, and Nie, 2014), although the scalability of such methods is
limited (see subsection 3.3). We next provide numerical results from a tensor in this
literature.

3.2. Example 4.11 from Cui, Dai, and Nie (2014). Our second test case is
a 5\times 5\times 5 symmetric tensor from Cui, Dai, and Nie (2014, Example 4.11):

Ti,j,k =
( - 1)i

i
+

( - 1)j

j
+

( - 1)k

k
, 1 \leq i, j, k \leq 5.(3.1)

The tensor has 3 eigenvalues (again, the tensor has an odd number of modes, so
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\lambda SDP V1 V2 V3 V4 V5

9.9779 \checkmark 94 0 0 100 0
4.2876 \checkmark 6 0 100 0 0
0.0000 \checkmark 0 100 0 0 100

Fig. 4. (Top) The 3 eigenvalues of the test tensor from from Cui, Dai, and Nie (2014, Ex-
ample 4.11) and the number of random trials (out of 100) that converge to the eigenvalue for 5
variations of our dynamical systems approach. Variation 1 selects the largest magnitude eigenvalue,
variation 2 selects the smallest magnitude eigenvalue, variation 3 selects the largest algebraic ei-
genvalue, variation 4 selects the smallest algebraic eigenvalue, and variation 5 selects the second
smallest algebraic eigenvalue. Our algorithm is able to compute all of the eigenvalues, which the
SDP approach is guaranteed to compute. (Bottom) Convergence plots for the three eigenvalues from
different variations of our algorithm in terms of the Rayleigh quotient, where \bfx k is the kth iterate.

the eigenvalues are only defined up to sign). We use the same 5 variations of our
algorithm to compute the eigenpairs (Figure 4). Again, we are able to compute all of
the eigenvalues of the tensor, and convergence is rapid.

3.3. Scalability experiments. Now we compare the performance of our algo-
rithm to both SS-HOPM, as implemented in the Tensor Toolbox for MATLAB.2 (Bader
and Kolda, 2006; Bader et al., 2017)), and the SDP method, also implemented in
MATLAB.3 Our implementation is written in Julia and is also publicly available.4

The following order-m, n-dimensional tensor (which is a generalization of (3.1))
serves as the test case for our experiments:

Ti1,...,im =

m\sum 
r=1

( - 1)ir

ir
, 1 \leq i1, . . . , im \leq n.(3.2)

With SS-HOPM, we use a tolerance of 10 - 6, a shift of 1, and 100n random initial-
izations. With the SDP method, we use the default parameter settings. With our
dynamical systems method, we use a stopping tolerance of 10 - 6, the forward Euler

2https://www.tensortoolbox.org
3http://www.math.ucsd.edu/\sim njw/CODES/reigsymtensor/areigstsrweb.html
4https://github.com/arbenson/TZE-dynsys

https://www.tensortoolbox.org
http://www.math.ucsd.edu/~njw/CODES/reigsymtensor/areigstsrweb.html
https://github.com/arbenson/TZE-dynsys
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Fig. 5. Running time for SS-HOPM (Kolda and Mayo, 2011), the SDP method (Cui, Dai, and
Nie, 2014), and our dynamical system method on the test tensor in (3.2). While the SDP method
does not scale, the approach has guarantees on the eigenvalues it can compute. Our dynamical
systems approach uses the map for the eigenvectors of the kth largest algebraic and magnitude (for
k = 1, . . . , n), along with the forward Euler numerical integration scheme with step size 0.5. We
terminated the SDP method if it did not complete within 24 hours, so only results for dimension up
to 10 appear in the plot on the far right.

integration scheme with step size = 0.5, and maps \Lambda corresponding to kth largest al-
gebraic and magnitude eigenvalue, k = 1, . . . , n, each with 50 trials of random initial
starting points. With this setup, SS-HOPM and our approach use the same number
of randomly initialized trials. We performed all experiments on a 3.1-GHz Intel Core
i7 MacBook Pro with 16 GB of RAM.

Figure 5 shows the running times of the algorithms for m = 3, 4, 5 and n =
5, 6, . . . , 15. The main takeaway is that the SDP method is much slower than the
other two methods---this is the price we pay for being able to compute all of the real
eigenvalues and dealing with NP-hardness. Our dynamical systems approach is faster
than SS-HOPM, which is somewhat surprising since we require an eigendecomposition
of an n\times n matrix at each iteration. However, the performance difference is a result of
rapid convergence, as observed in Figures 3 and 4. Finally, although the tensors here
are relatively small, our method has been used in recent work to compute eigenvectors
of tensors of orders 3, 4, and 5 with dimensions in the tens of thousands (Benson,
2019).

4. Stochastics as a guide. Scalable methods for computing tensor eigenvectors
remain a challenge. Our new framework for computing Z-eigenvectors offers insights
through three observations. First, a tensor Z-eigenvector is a matrix eigenvector of
some matrix, where the matrix is obtained by applying the tensor collapse operator
with the Z-eigenvector itself. Second, for a certain class of tensors where eigenvectors
have a stochastic interpretation, the dynamical system in (2.1) is the one that governs
the long-term dynamics of the stochastic process. Third, the same type of dynamical
system seems to work for more general tensors. This framework can compute tensor
eigenvectors that other scalable methods, such as SS-HOPM, cannot.

The dynamical system framework is a flexible setup to create solvers for tensor
eigenvector problems, and dynamical systems have also been used in matrix eigenvec-
tor problems (Chu, 1984; Golub and Liao, 2006). The difference between SS-HOPM
and our proposed framework, for instance, is essentially that SS-HOPM takes a single
step of the power method on the matrix \bfitT [x], whereas we converge to an eigenvector
of \bfitT [x]. There is a rich space to interpolate between these positions. Straightforward
ideas include low-degree polynomial filters that target specific eigenvectors.

Indeed, one major challenge is knowing what map \Lambda to choose---different choices
lead to different eigenvectors, and there is no immediate relationship between them for
general tensors. A second class of open questions relates to convergence theory. At the
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−1 0 1
x1

−1.0

−0.5

0.0

0.5

1.0

x 2

Smallest algebraic

Fig. 6. Vector field of dynamical systems from (2.1), along with trajectories of the dynamical
system, akin to Figure 2. However, here we normalize the vector to have unit 2-norm after each
step of numerical integration of the dynamical system. This helps converge to the attractor, where
the smallest algebraic eigenvalue map is undefined. A better understanding of why this helps is an
avenue for future research.

moment, we have demonstrated that there are both convergent and nonconvergent
cases (Figure 2). We can alleviate this problem by normalizing the iterates of the
integration scheme to have unit 2-norm after each iteration (Figure 6); however, we
do not have a good theory for why this works. Finally, our method is not immediately
applicable to H-eigenvectors because Observation 1.1 no longer holds. Adapting our
methodology to this class of eigenvectors is an area for future research.

Our framework came from relating tensor eigenvectors to stochastic processes.
This is quite different from the core ideas in the tensor literature, which are firmly
rooted in algebraic generalizations. We hope that these results encourage further
development of the relationships between stochastics and tensor problems.

Acknowledgments. We thank Brad Nelson for providing valuable feedback.
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